
A Unified Sparsification Approach for Matching Problems
in Graphs of Bounded Neighborhood Independence

Lazar Milenković

School of Electrical Engineering, Tel Aviv University

Tel Aviv

milenkovic.lazar@gmail.com

Shay Solomon

School of Electrical Engineering, Tel Aviv University

Tel Aviv

solo.shay@gmail.com

ABSTRACT
The neighborhood independence number of a graph G , denoted by

β = β (G), is the size of the largest independent set in the neighbor-

hood of any vertex. Graphs with bounded neighborhood indepen-

dence, already for constant β , constitute a wide family of possibly

dense graphs, including line graphs, unit-disk graphs, claw-free

graphs and graphs of bounded growth, which has been well-studied

in the area of distributed computing. In ICALP’19, Assadi and

Solomon [8] showed that, for any n-vertex graph G, a maximal

matching can be computed in O (n logn · β) time in the classic se-

quential setting. This result shows that, surprisingly, for almost

the entire regime of parameter β , a maximal matching can be com-

puted much faster than reading the entire input. The algorithm of

[8], however, is inherently sequential and centralized. Moreover, a

maximal matching provides a 2-approximate (maximum) matching,

and the question of whether a better-than-2-approximate matching

can be computed in sublinear time remained open.

In this work we propose a unified and surprisingly simple ap-

proach for producing (1+ϵ)-approximate matchings, for arbitrarily

small ϵ > 0. Specifically, set ∆ = O (
β
ϵ log

1

ϵ) and let G∆ be a ran-

dom subgraph of G that includes, for each vertex v ∈ G, ∆ random

edges incident on it. We show that, with high probability, G∆ is a

(1 + ϵ)-matching sparsifier for G, i.e., the maximum matching size

of G∆ is within a factor of 1 + ϵ from that of G . One can then work

on the sparsifier G∆ rather than on the original graph G. Since G∆

can be implemented efficiently in various settings, this approach is

of broad applicability; some concrete implications are:

• A (1 + ϵ)-approximate matching can be computed in the

classic sequential setting in O (
n ·β
ϵ 2 · log

1

ϵ) time, shaving a

logn factor from the runtime of [8] (for any constant ϵ), and
more importantly achieving an approximation factor of 1+ϵ
rather than 2. For constant ϵ , our runtime is tight, matching

a lower bound of Ω(n · β) due to [5, 8].

• G∆ can be computed in a single communication round in

distributed networks. Consequently, a (1 + ϵ)-approximate

matching can be computed in

(
β
ϵ log

1

ϵ

)O (1/ϵ)
+ O (1

ϵ 2) ·

log
∗ n communications rounds, which reduces to O (log∗ n)

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SPAA ’20, July 15–17, 2020, Virtual Event, USA
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-6935-0/20/07. . . $15.00

https://doi.org/10.1145/3350755.3400248

rounds when β and ϵ are constants; the previous (determin-

istic) algorithm by Barenboim and Oren [16, 17] requires a

similar number of rounds but its approximation factor is 2+ϵ .
Our sparsifier also provides a rare example of an algorithm

achieving a sublinear message complexity.
• A (1 + ϵ)-approximate matching can be dynamically main-

tained with update timeO (
β
ϵ 3 log

1

ϵ); the previous (determin-

istic) algorithm by Barenboim and Maimon [14] achieves

approximation factor 2 with a higher (by a factor of

√
n
β , for

constant ϵ) update time of O (
√
βn).

CCS CONCEPTS
• Theory of computation→ Sparsification and spanners; Dy-
namic graph algorithms; Distributed algorithms.

KEYWORDS
distributed algorithm, graph matching, maximum matching, neigh-

borhood independence, sublinear time, sparsification

ACM Reference Format:
Lazar Milenković and Shay Solomon. 2020. A Unified Sparsification Ap-

proach for Matching Problems in Graphs of Bounded Neighborhood Inde-

pendence. In ACM/IEEE Joint Conference on Digital Libraries in 2020 (SPAA
’20), July 15–17, 2020, Virtual Event, USA.ACM, New York, NY, USA, 12 pages.

https://doi.org/10.1145/3350755.3400248

1 INTRODUCTION
Graph matching is one of the most important and well-studied

problems in combinatorial optimization. Perhaps the original moti-

vations of the problem, dating back to the 40s, were to minimize

transportation costs and optimize assignments of personnel to job

positions [32, 50, 55, 82]. Since then, graph matching algorithms

have found a rich plethora of applications, ranging from scheduling

and object recognition to numerical analysis and computational

chemistry. Moreover, matching algorithms were also used as key

subroutines in other important optimization algorithms, such as the

traveling salesman problem [29], planar Max-Cut [45, 73] and short-

est paths [64]. In general, graph matching problems are intimately

connected to various other important problems.

Maximum cardinality matching (MCM) is perhaps the most basic

graph matching problem and its importance is hard to overstate.

The first (sequential) algorithms for computing an MCM [33, 54],

dating back half a century ago, are considered cornerstone results

in computer science, having triggered numerous groundbreaking

works on a variety of combinatorial optimization problems. In

particular, the work of Micali and Vazirani [70, 83], building on

that of Hopcroft and Karp for bipartite graphs [51], shows that

Session: Full Paper SPAA ’20, July 15–17, 2020, Virtual Event, USA

395

https://doi.org/10.1145/3350755.3400248
https://doi.org/10.1145/3350755.3400248

an exactMCM can be computed in time O (m
√
n). While the exact

MCM problem is not fully resolved yet, the approximate version is

(up to the ϵ dependence): the algorithm of [51, 70, 83] provides a

(1 + ϵ)-approximate MCM within time O (m/ϵ), for any ϵ > 0. In

general graphs, the approximate (1+ ϵ)-MCM algorithm of [70, 83]

is quite sophisticated; an alternative and much simpler approach

is to settle for a maximal matching, which can be computed via

a naïve greedy O (m)-time algorithm. Since a maximal matching

provides a 2-approximate MCM, this easily solves the approximate

MCM problem, albeit with an approximation factor of 2.

Due to its practical importance and wide applicability, graph

matching has been studied in a variety of settings and computation

models, including parallel algorithms (see, e.g., [36, 53, 58, 66]), dis-

tributed algorithms (see, e.g., [12, 49, 61, 67]), streaming algorithms

(see, e.g., [1, 4, 43, 57]), online algorithms (e.g., [19, 26, 37, 59]), dy-

namic algorithms (see, e.g., [18, 23, 44, 80]), and massively parallel

computation (MPC) (see, e.g., [4, 6, 31, 39]).

In a breakthrough paper from SODA’19, Assadi, Chen andKhanna

[5] presented a randomized sequential algorithm for (∆+1)-(vertex)
coloring that runs in time Õ (n

√
n), which in general is sublinear in

the input size. The same paper also shows that such a result cannot

be achieved for several related problems, including those of maxi-

mal matching and (1 + ϵ)-approximate MCM. In ICALP’19, Assadi

and Solomon [8] gave a randomized algorithm for computing a

maximal matching in O (n logn · β) time, where β = β (G) is the
neighborhood independence number of the input graph G, which is

the size of the largest independent set in the neighborhood of any

vertex. Moreover, as shown in [8], the lower bound from [5] for gen-

eral graphs can be extended to prove that Ω(n · β) time is necessary

for computing a maximal matching and (1 + ϵ)-approximate MCM

on graphs with neighborhood independence β , giving a nearly tight
(up to a logn factor) time bound for the maximal matching problem

for any β , and also suggesting that β is in some sense the “right”

parameter for measuring the runtime of maximal matching algo-

rithms. While a maximal matching provides a 2-approximate MCM,

the following question remained open:

Question 1.1. Can a better-than-2-approximatematching be com-
puted in sublinear time for bounded β?

Graphs with bounded neighborhood independence, already for

constant β , constitute a wide family of graphs, including line graphs,

unit-disk graphs, claw-free graphs and graphs of bounded growth.

Such graphs are possibly dense already for small values of β (e.g.,

the n-clique has Ω(n2) edges and β = 1). (More details on this graph

family appear in Section 1.1.) This family of graphs has been studied

primarily in the area of distributed computing; see [10, 15–17, 38, 47,

65, 78, 79] and the references therein. A drawback of the algorithm

of Assadi and Solomon [8] is that it is inherently sequential and

centralized, and requires a global coordination; in particular, it is

unclear if it can be parallelized or distributed efficiently.

In this workwe present a unified approach for producing a (1+ϵ)-
approximate MCMs, for arbitrarily small 0 < ϵ < 1. Our approach

is to construct a matching sparsifier, which is a sparse subgraph

that approximately preserves the MCM size. As will be shown next,

our sparsifier construction is as simple as it gets, it is inherently

local, which makes it naturally suitable for several settings, such as

the sequential, distributed, and dynamic computational models.

1.1 Our Contribution
A γ -matching sparsifier, for a graph G = (V ,E) and an approxi-

mation parameter γ ≥ 1, is a subgraph G ′ of G that preserves the

MCM size to within a factor of γ , that is, |MCM(G) | ≤ γ · |MCM(G ′) |;
the parameter γ will be referred to as the approximation factor of
the sparsifier G ′, and we shall focus on the regime of γ = 1 + ϵ , for
an arbitrarily small 0 < ϵ < 1. Clearly, the sparsifier should use

as few edges as possible (ideally, O (n) or even O (|MCM(G) |)) while
achieving an approximation factor close to 1.

Our matching sparsifier G∆ for a graph G is constructed as fol-

lows. For a fixed ∆ = O (
β
ϵ log

1

ϵ), each vertex marks ∆ random

edges incident on it in the graphG; the sparsifierG∆ consists of all

the marked edges.

The meta-theorem of our work is summarized in the following

statement, which is deliberately vague in the sense that it does

not state the runtime bounds of the construction; the exact run-

time bounds are model-dependent, and are detailed for each model

separately in Section 1.2.

Theorem 1.2. One can “efficiently construct” a (1 + ϵ)-matching

sparsifier with O
(
n ·

β
ϵ log

1

ϵ

)
edges, for any 0 < ϵ < 1 and β =

O
(
ϵn
logn

)
, where the bound on the approximation factor holds with

high probability. The size bound is actually O
(
|MCM(G) | ·

β
ϵ log

1

ϵ

)
.

BoundedNeighborhood IndependenceGraphs. Ourmeta-the-

orem concerns graphs of bounded neighborhood independence β .
Already for constant β , this constitutes a rich family of graphs. A

notable example is line graphs, which play a central role in the area

of distributed computing, and have neighborhood independence

number of at most 2. Another example is bounded growth graphs.
A graph G (V ,E) is said to be of bounded growth iff there exists a

function such that for every vertex v ∈ V and integer r ≥ 1, the

size of the largest independent set in the r -neighborhood of v is

bounded by f (r). Intersection graphs of geometrical objects such as

proper interval graphs [48], unit-disk graphs [46], quasi-unit-disk

graphs [62] and general disc graphs [47] are all bounded-growth

graphs. The family of bounded diversity graphs, for which there has

been a recent growing interest in efficient distributed algorithms

[11, 13, 15], is yet another subfamily of bounded neighborhood

independence graphs. The diversity of a vertex v is the number of

maximal cliques that v belongs to in the graph, and the diversity

of the graph is the maximum diversity of a vertex. Since each

clique contains just one independent vertex, the neighborhood

independence number of a graph with diversity k is at most k .
We remark that graphs with neighborhood independence num-

ber β are sometimes referred to as (β + 1)-claw-free graphs, i.e.,
graphs that do not contain K

1,β+1 as an induced subgraph. These

graphs were extensively studied in the context of structural graph

theory; see the series of papers by Chudnovsky and Seymour, start-

ing with [30], and also the survey by Faudree et al. [35].

We next consider several aspects of our meta-theorem.

Uniform Sparsity. We prove that the size of our sparsifier is up-

per bounded by 4|MCM(G) | · ∆, where |MCM(G) | is the MCM size of

the input graphG and ∆ is the number of neighboring edges that

every vertex marks. For super-constant values of β , this size bound

Session: Full Paper SPAA ’20, July 15–17, 2020, Virtual Event, USA

396

could be significantly smaller than the naïve n ·∆ upper bound. This

more refined size upper bound of the sparsifier is proved in Section

2.2. Moreover, in the same section we show that our sparsifier is

also uniformly sparse, which will be crucial for achieving a fast

distributed algorithm (in Section 3.2). We use the arboricity (see

Definition 2.11) as the measure of uniform sparsity.

Randomization and Approximation. Both randomization and

approximation are required for our construction of sparsifiers, G∆,

where every vertex marks ∆ (random) neighboring edges and the

sparsifier consists of all the marked edges. First, it is easy to verify

that if the edges marked for inclusion in the sparsifier are chosen

deterministically, the resulting sparsifier could have an arbitrarily

poor approximation ratio. Second, even allowing randomization,

we demonstrate that our construction of sparsifiers cannot preserve

the exact size of the MCM with reasonable probability, unless ∆ is

close to n. Further details are provided in Section 2.2.

1.2 Applications of Our Meta-Theorem
Our sparsification algorithm is inherently local, since every vertex

chooses independently of other vertices which among its neighbor-

ing edges to mark for inclusion in the sparsifier. As a result, it can

be distributed, parallelized and dynamized easily and efficiently,

and is therefore of rather broad applicability.

We next highlight some concrete applications.

Centralized Sequential Model. In Section 3.1 we demonstrate

that our sparsifier G∆ can be computed within time linear in its

size, namely, O (n ·
β
ϵ log

1

ϵ). We can then run the standard (1 + ϵ)-
approximate MCM algorithm of [52, 70, 83], which takes O (m/ϵ)
time for any m-edge graph, leading to a total runtime of O (n ·
β
ϵ 2 log

1

ϵ), which is sublinear in the graph size for almost the entire

regime of parameter β . (This result is given in Theorem 3.1.) More-

over, our algorithm achieves an approximation factor of 1+ϵ , while
shaving a factor of logn from the runtime of [8] in the entire regime

of parameter β = O
(

n
logn

)
(for any constant ϵ). We stress that the

complementary regime of β = ω
(

n
logn

)
is irrelevant, since in that

regime the runtime of [8] is inferior to the naïve O (n2) runtime of

the greedy maximal matching algorithm. Finally, our runtime is

tight in this entire regime of β = O
(

n
logn

)
(for constant ϵ), as it

matches the lower bound of Ω(n · β) due to [5, 8]. In particular, this

provides an optimal (up to the ϵ-dependence) positive resolution

to Question 1.1 for the regime β = O
(

n
logn

)
.

In fact, by using the refined upper bound on the size of our

construction, we obtain a runtime ofO (|MCM(G)| ·
β
ϵ 2 log

1

ϵ), which

could be significantly smaller than the above bound ofO (n·
β
ϵ 2 log

1

ϵ).

Distributed Computing. In Section 3.2 we demonstrate the ap-

plicability of our sparsifier in the area of distributed computing.

It is readily verified that our sparsifier can be computed in stan-

dard distributed networks within a single round of communication.

Since the arboricity of our sparsifier is low, we can run on top of

it a second sparsifier construction, due to Solomon from ITCS’18

[81], which has a low maximum degree. This will ultimately (see

Theorem 3.2) give rise to a distributed algorithm for computing a

(1 + ϵ)-approximate matching in

(
β
ϵ

)O (1/ϵ)
+O

(
1

ϵ 2
)
log
∗ n com-

munication rounds; when β and ϵ are constants, the number of

rounds is reduced to O (log∗ n), which provides an improvement

over the (deterministic) algorithm of Barenboim and Oren [16, 17]

that applies to graphs of constant neighborhood independence

and requires the same number of rounds, but achieves a (2 + ϵ)-
approximation.

We then apply our sparsifier construction to solve the problem of

distributed (1 + ϵ)-approximate MCM while achieving a sublinear

(depending, of course, on the neighborhood independence num-

ber β) message complexity. (Theorem 3.3 summarizes this result.)

This provides a new example to the very small pool of distributed

algorithms that achieve a sublinear message complexity.

Dynamic Algorithm. We employ our sparsifier construction G∆

to efficiently maintain a (1 + ϵ)-approximate MCM in the standard

fully dynamic setting. This dynamic setting is sequential and cen-

tralized, and it allows both insertions and deletions of edges, while

the vertex set is fixed, where in each step a single edge is added to

the graph or removed from it; such a step is called an edge update (or
shortly, an update). A common assumption is that initially there are

no edges in the graph, but this assumption does not lose generality

if the sequence of updates is large enough. Various graph problems

have been extensively studied in the fully dynamic setting since

the 80s; refer to [18, 20–25, 28, 44, 71, 77, 80, 81] and the references

therein for works on graph matching and related problems.

One may try to optimize the amortized (i.e., average) update

time of the algorithm or its worst-case (i.e., maximum) update time,

over a worst-case sequence of graphs; it is obviously more chal-

lenging to achieve a low worst-case update time. In Section 3.3

we demonstrate that a (1 + ϵ)-approximate MCM can be main-

tained in the fully dynamic setting with a worst-case update time

of O
(
∆/ϵ2

)
= O (

β
ϵ 3 log

1

ϵ); the previous (deterministic) algorithm

by Barenboim and Maimon [14] achieves approximation factor 2

with a higher (by a factor of

√
n
β , for constant ϵ) update time of

O (
√
βn).

Remarkably, our update time bound holds deterministically and

the approximation factor of (1 + ϵ) holds with high probability

against an adaptive adversary. (Theorem 3.5 summarizes this result.)

This is a rare example of a randomized algorithm that does not make

the oblivious adversary assumption, in which the adversary (i.e., the

entity inserting and deleting edges to and from the graph) cannot

decide its updates adaptively based on the algorithm’s output; all

other randomized algorithms for dynamic graphmatching problems

make this assumption, with the sole exception of the very recent

STOC’20 paper of Wajc [84].

1.3 Preliminaries
We shall sometimes abbreviate maximum (cardinality) matching

as MCM, as was already done in Sections 1.1 and 1.2. Also, for a

graphG , let |MCM(G) | denote the MCM size inG , where MCM(G) may

denote an arbitrary MCM of G.

Session: Full Paper SPAA ’20, July 15–17, 2020, Virtual Event, USA

397

As usual, for a graph G = (V ,E), let n = |V | denote the number

of vertices in the graph.

The degree of a vertexv inG , denoted by deg(v), is the number of

edges incident onv inG . Themaximum degree ofG is the maximum

degree of any vertex inG . Also, for a vertex setV ′ ⊆ V , let degV ′ (v)
denote the degree of v in the subgraph G[V ′] of G induced by V ′;
note that deg(v) = degV (v).

We say that an event happens with high probability if it happens

with probability at least 1−1/poly(n). In some situations it is further

required that the success probability will be at least 1 − 1/nc , for
an arbitrarily large constant c > 1.

2 THE SPARSIFIER

The random sparsifier, G∆. Given a graph G = (V ,E), we
“mark” ∆ neighbors of each vertex uniformly at random (without

replacement). If the degree of a vertex is at most ∆, we mark all

its neighbors. Denote by E∆ the set of marked edges, and let G∆ =

(V ,E∆) be the subgraph of G over the vertex set V and the set E∆
of marked edges. We will refer to G∆ as a random sparsifier of G.

In Section 2.1 we bound the approximation factor of G∆, which

is the main technical contribution of this work. Some other useful

properties of this sparsifier are provided in Section 2.2.

2.1 G∆ is a (1 + ϵ)-sparsifier
This section is devoted to the proof of the following theorem. We

stress that the proof is subtle. The naïve approach for proving this

theorem overlooks strong probability dependencies and is there-

fore doomed to failure; more details are provided in the paragraph

preceding Lemma 2.6 and in the proof of that lemma.

Theorem 2.1. For any graphG with neighborhood independence

β , where 0 < ϵ < 1 and β = O
(
ϵn
logn

)
, G∆ is a (1 + ϵ) matching

sparsifier for G with high probability, for ∆ = Θ
(
β
ϵ log

1

ϵ

)
.

Remark.The success probability is at least 1−1/poly(n′), where
n′ is the number of non-isolated vertices. Clearly, the success prob-

ability should depend on n′ rather than n, and we shall henceforth

assume in what follows that there are no isolated vertices.

In what follows letM be an arbitrary MCM inG , and denote the

sets of matched and free vertices inM by VM and VF , respectively.
The following lemma, which will be used for proving Theorem

2.1, provides a lower bound on theMCM size in terms of the number

of (non-isolated) vertices n and β .

Lemma 2.2. |M | ≥ n
β+2 .

Proof: Suppose for contradiction that |M | < n
β+2 , i.e., |M | (β + 2) <

n. Given that |VM | = 2|M |, we get that |VF | > |M |β . SinceM is an

MCM, VF is an independent set, hence all the edges incident on VF
lead toVM . Racalling the assumption of having no isolated vertices,

each vertex of VF is adjacent to at least one edge, and the number

of edges from VF to VM is at least |VF |. Then, by the pigeonhole

principle there exists an edge e ofM that is incident to more than

β vertices ofVF . If all the vertices are incident to one endpoint of e ,
this contradicts the fact that the neighborhood independence of G
is β . On the other hand, if each endpoint of e leads toVF , then since

e is incident to at least β + 1 vertices of VF , this yields a length-3
augmenting path, which contradicts the fact thatM is of maximum

size. It follows that |M | ≥ n
β+2 , as required.

To prove Theorem 2.1, we will show that the subgraph G∆[VM]

of the sparsifier G∆ induced by VM contains a matching of size

greater than

(
1 − ϵ

2

)
|M | with high probability.

Definition 2.3. A vertex is said to be of high degree (respectively,
low degree) if its degree is bigger than (resp., at most) ∆.

We stress that this partition of the vertex set into high and low

degree vertices depends only on the input graph and ∆, and it does

not depend on randomness or the choices made by the algorithm

in any way; our proof makes critical use of this observation.

Let M∆ be an arbitrary MCM in G∆[VM] that maximizes the
number of low degree matched vertices. LetWM andWF denote the

sets of matched and free vertices inM∆, respectively, and note that

WM ,WF ⊆ VM . Our new goal is to show that |WM | >
(
1 − ϵ

2

)
|VM |

with high probability, from which Theorem 2.1 would follow.

Claim 2.4. WF contains only high degree vertices.

Proof: Suppose for contradiction that there is a low degree vertex

w inWF . Since w is also in VM , it has a matemate (w) in M , and

asw is of low degree, all its neighborhood from the original graph

is included in the sparsifier, hence edge (w,mate (w)) belongs to
G∆. It follows thatmate (w) is inWM , as otherwise we could add

(w,mate (w)) toM∆, which is a contradiction to the fact thatM∆ is

an MCM inG∆[VM] . Let x be a mate ofmate (w) inM∆. We modify

M∆ by removing (mate (w),x) from it and adding (w,mate (w)) to
it in its place. Clearly, the cardinality of the resulting matching

remains the same, hence we can apply the same argument for x
instead of w , in case x is of low degree. Indeed, the mate of x
in M ,mate (x), must be inWM , otherwise the resulting matching

were not of maximum size. This process yields an alternating path,

and it must terminate since the symmetric difference between the

matching resulting at each step and M strictly decreases. Upon

termination, the number of low degree vertices in the resulting

matching has increased, which contradicts our choice ofM∆.

SinceWF is an independent set, Claim 2.4 yields the following

corollary.

Corollary 2.5. There exists an independent set in G∆ of at least
|WF | high degree vertices of VM .

The following lemma is central to the proof of Theorem 2.1.

As shown below, we do not reason probabilistically on the set

WF directly, since this set depends on the random sparsifier G∆.

In particular, the probability that a certain event involving some

vertex v occurs, when conditioned on v belonging toWF , could be

very different than without this conditioning. This technical hurdle

enforces us to employ a more subtle argument.

Lemma 2.6. |WF | <
ϵ
2
|VM | with high probability, for β = O

(
ϵn
logn

)
.

Proof: To prove the lemma, we upper bound the probability that

a large independent set U of high degree vertices exists in G∆. (By

Corollary 2.5, if no such independent set exists, the size of WF
cannot be too big, which will complete the proof of the lemma.)

Session: Full Paper SPAA ’20, July 15–17, 2020, Virtual Event, USA

398

We next make the following claim, which by the union bound

over all such sets U provides the required result.

Claim 2.7. Fix an arbitrary subset U of VM of size at least ϵ
2
|VM |

such that all its vertices are of high degree. The probability that U
forms an independent set inG∆, denoted by E (U) , is at most (ϵ/24) |U | .

Proof: Throughout the proofwe take∆ to be 20
β
ϵ ln

24

ϵ = O
(
β
ϵ log

1

ϵ

)
.

Notice that every vertex in VM has at most β neighbors in VF ,
sinceVF is an independent set and the neighborhood independence

number of G is β . For an arbitrary vertex v ∈ U , denote the event

that all edges marked due to v lie outside U (recall that all such

edges are taken to the sparsifier G∆) by E
(U)
v . Then we have

IP(E
(U)
v) =

∆∏
i=1

(
degV \U (v) − i + 1

deg (v) − i + 1

)

≤

(
degV \U (v)

deg (v)

)∆
≤ *
,

degVM \U (v) + β

degVM (v) + β
+
-

∆

, (1)

where deg (v) denotes the degree of v in G, and for anyW ⊆ V ,
degW (v) denotes the degree of v in the subgraph of G induced by

W .

In what follows we restrict our attention to the subgraphG[VM]

of G induced by VM (ignoring vertices of VF and edges incident on

them). We apply the following definition from [8] to G[VM].

Definition 2.8. Fix 0 < δ < 1. We say that v ∈ U is a δ -good
vertex if its degree inVM is at most 1/δ or its degree inU is at least a
δ fraction of its degree inVM \U , namely degU (v) ≥ δ degVM \U (v).

Lemma 7 of [8] implies that, if δ = |U |
4κβ , at least half of the

vertices inU are δ -good, where κ = |VM |. Denote the set of good
vertices inU byUG . Observe thatUG is determined byU and by the

partition ofV intoVF andVM , hence it is fixed prior to the construc-

tion of the random sparsifier G∆. Also, the random choices made

due to any vertex v are independent of random choices made due

to other vertices. We summarize this in the following observation.

Observation 2.9. For any good vertex v , we have IP(E (U)
v) ≤(

degVM \U
(v)+β

degVM
(v)+β

)∆
, and this bound holds independently of random

choices made due to other vertices.

Since ∆ ≥ β+8β/ϵ , every vertex inU has a degree (inVM) at least

8β/ϵ , which, in turn, exceeds 1/δ , and therefore every good vertex

v satisfies degU (v) ≥ δ degVM \U (v). We employ this lower bound

on degU (v) to strengthen the upper bound on IP(E
(U)
v) provided

by Observation 2.9 for an arbitrary good vertex v as follows:

IP(E
(U)
v) ≤ *

,

degVM \U (v) + β

degVM (v) + β
+
-

∆

≤ *
,

1

1+δ degVM (v) + β

degVM (v) + β
+
-

∆

≤ *
,
1 −

ϵ
9β degVM (v)

degVM (v) + β
+
-

∆

≤

(
1 −

ϵ

10β

)∆
, (2)

where the second inequality holds since v is a good vertex and the

third inequality holds by the choice of δ . WriteUG = {v1, . . . ,vд },

where д = |UG | ≥ |U |/2 is the number of good vertices. Recall

that E (U)
denotes the event that U is an independent set in G∆,

Observation 2.9 and Equation (2) yield

IP(E (U)) ≤ IP(E
(U)
v1
∩ E

(U)
v2
∩ . . . ∩ E

(U)
vд)

= IP(E
(U)
v1
| E

(U)
v2
∩ . . . ∩ E

(U)
vд)

· IP(E
(U)
v2
| E

(U)
v3
∩ . . . ∩ E

(U)
vд)

. . .

· IP(E
(U)
vд)

= IP(E
(U)
v1

) · IP(E
(U)
v2

) · . . . · IP(E
(U)
vд)

≤ *
,

(
1 −

ϵ

10β

)∆
+
-

д

≤

(
1 −

ϵ

10β

) ∆|U |
2

,

which is upper bounded by (ϵ/24) |U | for any ∆ ≥ 20
β
ϵ ln

24

ϵ =

O
(
β
ϵ log

1

ϵ

)
. Claim 2.7 follows.

To complete the proof of Lemma 2.6, denote by E the event that

|WF | ≥
ϵ
2
|VM | and letU be the collection of all subsets of VM that

satisfy the conditions of Claim 2.7 (namely, of size at least
ϵ
2
|VM |

and such that all vertices are of high degree). By Corollary 2.5, it

holds that IP(E) ≤ IP(
⋃
U ∈U E

(U)). By the union bound,

IP(E) ≤
∑
U ∈U

IP(E (U)) ≤
κ∑

i= ϵ
2
κ

(
κ

i

)
·

(ϵ
24

)i
. (3)

(Recall that κ = |VM |.) The ratio of successive terms in the sum of

the right-hand side of Equation (3) is upper bounded by(κ
i+1

) (
ϵ
24

)i+1(κ
i

) (
ϵ
24

)i =

(κ − i
i + 1

) (ϵ
24

)
≤

(
κ − ϵ

2
κ

ϵ
2
κ + 1

) (ϵ
24

)
≤

1

12

,

where the first inequality holds since, in the range
ϵ
2
κ ≤ i ≤ κ,

the term
κ−i
i+1 is maximized when i = ϵ

2
κ. Hence the sum of the

right-hand side of Equation (3) is dominated by a geometric sum

with common ratio of 1/12 and q0 =
(κ
ϵ
2
κ

) (
ϵ
24

) ϵ
2
κ
being the first

term, which can naively be upper bounded by 2q0. It follows that

κ∑
i= ϵ

2
κ

(
κ

i

)
·

(ϵ
24

)i
≤ 2

(
κ
ϵ
2
κ

) (ϵ
24

) ϵ
2
κ

≤ 2

(
1

2

) ϵ
2

2n
β+2

(κ = 2|M | ≥
2n

β + 2
by Lemma 2.2)

≤
1

nc
(holds for β = O

(
ϵn

logn

)
) (4)

The constant c can be made arbitrarily large by decreasing the

constant hiding under the O-notation in the definition of β .
Plugging Equation (4) into Equation (3), we obtain IP(E) ≤ 1

nc ,

where E is the event that |WF | ≥
ϵ
2
|VM |. We conclude that |WF | <

ϵ
2
|VM | with high probability, thus proving Lemma 2.6.

Completing the proof of Theorem 2.1. Lemma 2.6 implies

|M∆ | =
1

2

(|VM | − |WF |) >
1

2

(
|VM | −

ϵ

2

|VM |
)
=

(
1 −

ϵ

2

)
|M |,

Session: Full Paper SPAA ’20, July 15–17, 2020, Virtual Event, USA

399

which yields M∆ (1 + ϵ) > |M |. In other words, we have shown

thatG∆ is a (1+ ϵ)-sparsifier forG , when ∆ = Θ
(
β
ϵ log

1

ϵ

)
, for any

0 < ϵ < 1 and β = O
(
ϵn
logn

)
, as required.

2.2 Additional properties of G∆

In this sectionwe present a few observations regarding the sparsifier

G∆, some of which will play a major role in the applications of

Section 3.

2.2.1 G∆ is sparse. Clearly, the sparsifierG∆ contains at most n ·∆
edges. This size bound will be used for achieving a sublinear-time

algorithm in the centralized sequential setting (Section 3.1) and a

distributed algorithm that uses a sublinear number of messages

(Section 3.2.1).

The following observation shows that, roughly speaking, one can

replacen in this naïve size bound by theMCM size. This sharper size

bound will be crucial for the performance of our dynamic algorithm

(Section 3.3).

Observation 2.10. G∆ contains at most 2|MCM(G) | · (∆+β) edges.

Proof: LetVM andVF be the sets of matched and free vertices with

respect to any MCM (or even a maximal matching)M . Since VF is

an independent set, all edges touching VF must lead to VM . Since

the neighborhood independence number is β , each vertex in VM
has at most β neighbors in VF , so the number of edges touching

VF in the graph, and thus in the sparsifier, is at most |VM | · β . The
remaining edges in the sparsifier have both endpoints in VM , so

their number is trivially bounded by VM · ∆. Overall, the sparsifier
contains at most |VM | · β + |VM | · ∆ ≤ 2|MCM(G) | · (∆ + β) edges.

Remark. Since ∆ is larger than β (see the statement of Theorem

2.1), the size upper bound provided by Observation 2.10 does not

exceed 4|MCM (G) | · ∆. For super-constant values of β , this size
bound could be significantly smaller than the naïve bound of n · ∆.

2.2.2 G∆ is uniformly sparse. Observation 2.10 shows that G∆ is

sparse. We next observe that it is also uniformly sparse, which will

be crucial for achieving a fast distributed algorithm (Section 3.2).

Definition 2.11. The arboricity of an undirected graph G =

(V ,E) is defined as α (G) =maxU ⊆V

⌈
|E (U) |
|U |−1

⌉
, where E (U) is the set

of edges induced by U (which we assume has size |U | ≥ 2).

Observation 2.12. The arboricity of G∆ is at most 2∆.

The proof is straightforward, so we will omit it.

2.2.3 G∆ is not deterministic or exact for a reason.

We first argue that randomization is required for our specific

construction of sparsifiers, G∆, where every vertex marks ∆ neigh-

boring edges and the sparsifier consists of all the marked edges. The

argument is a standard one and follows similar lines as those used in

the proof of Theorem 11 in [8]; it is provided here for completeness.

Lemma 2.13. Fix n and ∆ such that ∆ < n/2. Consider any de-
terministic algorithm that constructs a sparsifier G∆ in every graph
n-vertex graphG with β (G) = 2, where the algorithm queries up to ∆
entries of the adjacency array of each vertex and includes inG∆ up to

∆ adjacent edges for each vertex (possibly different than the queried
ones). Then the approximation ratio of G∆ (for some graphs G with
β (G) = 2) is no better than n

2∆ .

Remark.When ∆ ≥ n/2, an approximation no better than
n
2∆

vacuously holds, hence the restriction in the lemma statement.

Proof: Consider the family of graphs Gn , for an even n ∈ N,
obtained by removing a single edge from a clique Kn on n vertices.

For a graph G ∈ Gn , we denote the single edge not in G by ē (G),
and refer to it as the non-edge of G. Clearly β (G) = 2 for every

G ∈ Gn and G contains a (perfect) matching of size n/2.
Let A be a deterministic algorithm for constructing sparsifier

G∆ on every graphG ∈ Gn . We consider a game betweenA and an

adaptive adversary that answers the probes of A to the adjacency

array of the input. Each timeA probes a new entry of the adjacency

array for some vertex u ∈ V , the adversary outputs a vertex v ∈ V
in the neighborhood of u that has not been so far returned as an

answer to a query on u.
The adversary picks an arbitrary set D of ∆ vertices at the out-

set. On the other hand, the non-edge of the graph will be chosen

adaptively by the adversary. We may assume that the algorithm A

knows the number of vertices n in the graph, the parameter ∆ and

the vertex set D; the only missing information to A is the identity

of the non-edge.

When a vertex u ∈ V \ D is queried byA, the adversary returns

an arbitrary vertex from D not returned thus far as an answer to

a query on u; since at most ∆ queries on u are performed and as

|D | = ∆, this strategy is well-defined. When a vertex u ∈ D is

queried, the adversary returns an arbitrary vertex in V \ u not

returned thus far as an answer to a query on u; this too is well-

defined, as n ≥ ∆ + 1 is implied by the condition ∆ < n/2 in the

lemma statement. Note that any edge returned by the adversary is

incident onD with at least one endpoint. Suppose that the algorithm

A returns a sparsifierG∆ of approximation ratio better than
n
2∆ . By

definition, this means that G∆ contains a matching of size bigger

than ∆, and as such, it must include at least one edge e with both

endpoints outside D. But the graph G ∈ Gn whose non-edge is

e (i.e., ē (G) = e) is consistent with all the edges returned by the

adversary but it does not include edge e , hence e does not belong to
G∆. In other words, there always exists at least one graph in Gn for

which the output of A is not feasible, completing the proof.

The lower bound provided by Lemma 2.13 applies only to our

construction G∆ of sparsifiers. Nonetheless, one can extend the

lower bound argument of [8] (see Section 5 therein) to obtain a sim-

ilar hardness result that applies to any deterministic construction

of sparsifiers. Since the focus of our work is on the upper bounds

side and as this extension is rather straightforward yet a bit tedious,

we omit the details for the sake of conciseness.

Next, allowing randomization, we claim that our construction

of sparsifiers G∆ cannot preserve the exact size of the MCM with

reasonable probability, unless ∆ is close to n.

Observation 2.14. There exist (infinitely many) n-vertex graph
instances G such that if the randomized sparsifier construction G∆

preserves the exact MCM size with probability p, then ∆ needs to be as
large as Ω(p ·n). Moreover, to achieve a high success probability (more
precisely, a success probability of at least 1 − 1

nc for an arbitrarily

Session: Full Paper SPAA ’20, July 15–17, 2020, Virtual Event, USA

400

large constant c > 1), the sparsifier G∆ needs to coincide with the
entire graph G.

Proof: Consider a graph G that consists of two complete graphs

A := Kn/2 and B := Kn/2 that span an odd number of vertices

each (i.e., n/2 is an odd integer) and a single edge that connects

a vertex a of A with a vertex b of B. Observe that the MCM size

in G is n/2 and that any MCM must contain edge (a,b), i.e., any
matching forG that does not contain edge (a,b) is not of maximum

size. Note further that edge (a,b) can be marked only by a and by b,
thus assuming each vertex marks ∆ neighboring edges uniformly

at random, the probability of not marking edge (a,b) is:

*.
,

(n/2−1
∆

)
(n/2
∆

) +/
-

2

=

(
1 −

2∆

n

)2
. (5)

It follows that the probability of marking edge e is 1 − (1 − 2∆
n)2,

which is at most
4∆
n . In other words, for the sparsifier to include

this edge with probability p, ∆ should be set to Ω(p · n). Moreover,

to achieve a high probability (a success probability of at least 1− 1

nc
for an arbitrarily large constant c > 1), we must take ∆ to be n/2,
in which case the sparsifier G∆ is the entire graph G.

3 APPLICATIONS
In this section we demonstrate the applicability of our matching

sparsifier construction,G∆, in several different settings. In addition

to these concrete applications, our sparsification algorithm can be

used more broadly in computational models where there are local

or global memory constraints, such as the massively parallel com-

putation (MPC) model (which is an abstraction of MapReduce-style

frameworks, cf. [4, 31]), the streaming model of computation (cf.

[3]), and the dynamic distributed model (where some graph struc-

ture has to be maintained in a dynamically changing distributed

network using low local memory at processors, cf. [7, 27, 56, 75]).

3.1 Centralized Sequential Algorithms
Our first application is in the classical centralized sequential setting.

Assume for now that our matching sparsifier G∆ can be computed

within time linear in its size, namely,O (n ·
β
ϵ log

1

ϵ). We can then run

the standard (1+ϵ)-approximate MCM algorithm of [52, 70], which

takesO (m/ϵ) time for anym-edge graph, leading to a total runtime

of O (n ·
β
ϵ 2 log

1

ϵ), which is sublinear in the graph size for almost

the entire regime of parameter β . Moreover, by Observation 2.10,

we actually get a sharper runtime bound of O (|MCM(G) | ·
β
ϵ 2 log

1

ϵ).
It remains to justify the assumption that G∆ can be computed

within time linear in its size (which, in turn, is sublinear in general in

the size of the original graphG). It is straightforward to achieve this
runtime with high probability, as will be shown next, but our goal

is to achieve this runtime bound deterministically; this is possible
since the bounds on the size and arboricity of G∆ are deterministic

(the only use of randomization is for achieving the bound 1 + ϵ
on the approximation factor, which holds with high probability).

Before proceeding further, we stress that it is crucial to specify the

exact data model when considering sublinear-time algorithms, as

such algorithms cannot even read the entire input. We shall assume

that the input graph is given in the adjacency array representation,

which means that for each vertex v ∈ V , we are given the degree

deg(v) of v , followed by an array of length deg(v) containing all

neighbors of v in an arbitrary order. This way, we can determine

the degree of any vertex v or its i-th neighbor for i ∈ [deg(v)]
in O (1) time. Typically the algorithm has read-only access to the

adjacency arrays of vertices, i.e., one cannot write to these arrays.

We also make the common assumption that a random number

from 1 to n can be generated in O (1) time. This is a standard input

representation for graph problems and is commonly used in the

area of sublinear-time algorithms (see, e.g. [8, 41, 42, 72]).

The only nontrivial issue in constructing G∆ within time lin-

ear in its size arises in the implementation of the random edge

samplings. Recall that for each vertex v , we mark ∆ neighboring

edges uniformly at random (without repetitions), and the sparsi-

fier includes all the marked edges. Consider an arbitrary vertex

v . A straightforward randomized approach would be to generate

a random number from 1 to deg(v), say i , mark the edge corre-

sponding to the i-th neighbor of v if unmarked, and repeat until

min{∆, deg(v)/2} edges incident to v have been marked. There is

a small technical issue with vertices of degree lower than 2∆, so
for this to work, we tweak the construction of G∆ so that we will

mark all the neighbors of any vertex of degree at most 2∆ (rather

than ∆ as before); this tweak will increase the size and arboricity

bounds of the sparsifier by at most a factor of 2, which is fine. It

is now readily verified that this sampling method leads to O (∆)
time in expectation for each vertex v , and we obtain the required

runtime bound of O (n · ∆) = O (n ·
β
ϵ log

1

ϵ) with high probability

by applying a standard Chernoff bound.

Instead of achieving a probabilistic bound on the runtime that

holds with high probability, we next show that the same runtime

bound can be achieved deterministically by designing amore careful

edge sampling method. In other words, we shall obtain an algorithm

with deterministic runtime bound and probabilistic bound on the

approximation guarantee.

The naïve sampling method that leads to O (∆) deterministic

time per vertex v is to sample a random integer i between 1 and

deg(v), and then swap the i-th element of the adjacency array with

the element at position deg(v). (In this discussion, we may identify

the i-th neighbor of v with the corresponding edge incident on v ,
when this should not lead to a misunderstanding.) In the next step,

we sample an integer between 1 and deg(v) − 1, replace it with

the element at position deg(v) − 1, and so on, until we have sam-

pled min{∆, deg(v)} elements. At the end, the last min{∆, deg(v)}
members of the adjacency array correspond to the marked edges

incident to v (and will be included in the sparsifier). The problem

with this approach is that it requires the algorithm to write to the

adjacency arrays, while, as mentioned above, sublinear algorithms

typically have read-only access to these arrays.

To overcome this problem, the first idea that comes to mind is

to create a copy of the adjacency array of each vertex and work

on the copy array instead of the read-only array. Unfortunately,

the runtime required for creating copies of all the adjacency arrays

is linear in the input size. (Recall that our goal is to work within

time linear in the size of the sparsifier G∆, but not in time linear

in the size of the entire input graph G.) We resolve this issue by

introducing an additional array for each vertex v of the graph,

Session: Full Paper SPAA ’20, July 15–17, 2020, Virtual Event, USA

401

denoted by posv , which will represent the positions of the vertices
in the adjacency array of v . The key insight here is that, instead of

copying the entire content of an adjacency array to a new array, the

new array posv that we introduce can be initialized in constant time

uniformly, i.e., to the same initial value. Specifically, we can choose

to initialize posv with zeroes, meaning that each element is at its

original position. This is possible using the so-called “sparse array”

data structure, which supports all the usual operations of array and,

on top of that, supports initialization to a single arbitrary value in

constant time; see [2] for further details on this data structure.

Using theposv array, we will emulate the naïve sampling method

described above without ever writing to the adjacency array of v .
Specifically, instead of actually moving the elements of the adja-

cency array of v , we will “implicitly” move them by changing the

entries of posv , so that the i-th entry of posv (denoted by posv [i])
represents the actual position of the i-th element in the adjacency

array of v (i.e., its position as if we have made the actual moves). A

zero entry means that the element has not been moved yet. More

formally, we will maintain the following invariant: posv [i] is zero
iff the element has not been moved yet and otherwise it represents

the actual position of the i-th element in the adjacency array of

v . As before, we will sample a random integer i1 between 1 and

deg(v), and emulate the changes to the adjacency array by making

the following modifications to the posv array. We change posv [i1]
to i1 and posv [deg(v)] to deg(v). Next we simply replace posv [i1]
with posv [deg(v)], thereby emulating the consequences of the ac-

tual swap. It is easy to see that by doing that, the aforementioned

invariant will hold. In the next step, we generate a random number

i2 between 1 and deg(v) − 1. If posv [i2] is zero, we set it to i2 and
if posv [deg(v) − 1] is zero we set it to deg(v) − 1 and finally swap

posv [i2] with posv [deg(v) − 1]. And so forth. In this way the in-

variant always holds and after min{∆, deg(v)} sampling steps, the

last min{∆, deg(v)} entries of the array posv represent the actual

positions of the elements in the adjacency array after the (implicit)

changes have been performed. Each of the above operations takes

constant time, hence we can perform the edge sampling for a single

vertex in O (∆) time, and the entire sparsifier can thus be built in

O (n · ∆) = O
(
n ·

β
ϵ log

1

ϵ

)
time, as required.

Summarizing, we have proved the following theorem.

Theorem 3.1. A (1 + ϵ)-approximate matching can be computed
in the centralized sequential setting in O (n ·

β
ϵ 2 log

1

ϵ) deterministic

time, for any 0 < ϵ < 1 and β = O
(
ϵn
logn

)
, where the bound on

the approximation factor holds with high probability. Moreover, the
sharper runtime bound of O (|MCM(G) | ·

β
ϵ 2 log

1

ϵ) holds as well.

Remark. Assadi and Solomon [8] presented a randomized algo-

rithm for computing amaximal matching (and thus a 2-approximate

MCM) whose runtime is bounded by O (n logn · β) with high prob-

ability. Our algorithm achieves an approximation factor of 1 + ϵ ,
and its runtime shaves a factor of logn from the runtime of [8]

in the entire regime of parameter β = O
(

n
logn

)
, and for any con-

stant ϵ . As mentioned, the complementary regime of β = ω
(

n
logn

)
is irrelevant in terms of the improvement over [8], since in that

regime the runtime of [8] is inferior to the naïve O (n2) runtime

of the greedy maximal matching algorithm. Finally, our runtime

is tight for all β = O
(

n
logn

)
(for constant ϵ), matching the lower

bound of Ω(n · β) due to [5, 8]. Consequently, we answer Question

1.1 in the affirmative, and furthermore provide an optimal (up to

the ϵ-dependence) resolution in the regime β = O
(

n
logn

)
.

3.2 Distributed Algorithms
We focus on the LOCAL and CONGEST models of commu-

nication (cf. [76]), which are two standard models in distributed

computing that capture the essence of spatial locality and conges-

tion. In these models, all the processors wake up simultaneously and

computation proceeds in fault-free synchronous rounds in which

every processor exchanges messages of either unbounded size (in

the LOCAL model) or of O (logn)-bit size (in the CONGEST

model). Furthermore, since our sparsifier relies on a simple sam-

pling primitive that does not require the knowledge of processors’

identifiers, it can be constructed in the KT0 model.

It is immediate that our matching sparsifier G∆ can be imple-

mented in distributed networks using a single communication

round in the LOCAL model. In particular, if messages are trans-

mitted in a broadcast manner, i.e., any piece of information sent

from a processor reaches all its neighbors (rather than a subset of

its neighbors), then a single round of communication will naively

require messages of size O (logn · ∆) (where ∆ is the number of

random neighboring edges “marked” locally by a processor, and it

grows linearly with β). Many distributed message-passing systems,

however, support unicast or multicast transmissions, meaning that

any processor can send a message to a subset of its neighbors. In

such systems, which we shall refer to as unicast communication
systems, our sparsifier can be implemented in a single round using

1-bit messages in a straightforward way. Indeed, in a single round

each processor locally marks randomly ∆ of its neighboring edges,

and can then send a 1-bit message only along its “marked” edges.

From that stage onwards, one can work on the sparsifier G∆

rather than the original graph G. It is desirable in general, and

for our purposes in particular (as demonstrated below), to work

with bounded degree graphs. Alas, we cannot upper bound the

maximum degree of G∆ by ∆, and a-priori there may exist graph

instances G for which the degree of G∆ is much greater than ∆. In
fact, the question of upper bounding the maximum degree of G∆

in general graphs, as a function of n, β and ϵ , is likely to coincide

with deep mathematical questions regarding the distribution of the

maximum degree in special types of random graphs. Therefore,

instead of trying to upper bound the maximum degree of G∆, we

resort to the more robust sparsity parameter of arboricity, which
roughly speaking measures how uniformly sparse the graph is. As

we have shown in Observation 2.12, the arboricity of our sparsifier

is upper-bounded by 2∆.
In ITCS’18, Solomon [81] gave a construction of (1+ϵ)-sparsifiers

with bounded degree in graphs of bounded arboricity. Specifically,

given a graph with arboricity bounded by α , one can construct a

(1+ϵ)-matching sparsifier for it with maximum degree bounded by

∆α = Θ(α/ϵ), as follows. For each vertex we mark ∆α = Θ(α/ϵ)
arbitrary neighboring edges, and then take to the sparsifier only

edges that are marked by both endpoints. As with our sparsifier,

Session: Full Paper SPAA ’20, July 15–17, 2020, Virtual Event, USA

402

the sparsifier of [81] can be constructed in a single communication

round. Clearly, the maximum degree of that sparsifier is at most

∆α = Θ(α/ϵ). The sparsifier of [81] is different than ours in two

aspects. First, it is deterministic, so marking any set of ∆α arbitrary

neighboring edges per vertex will do the job in bounded arboricity

graphs, whereas, as shown by Lemma 2.13, in bounded neighbor-

hood independence graphs randomization is essential. Second, the

sparsifier of [81] includes only edges that are marked by both end-

points, which leads to a degree upper bound of ∆α , but the same

trick fails in bounded neighborhood independence graphs.

By composing the two sparsifiers, we obtain a clean and simple

reduction for the problem of distributed (1 + ϵ)-approximate MCM

from graphs of bounded neighborhood independence to bounded

degree graphs, which requires only two communication rounds.

Concretely, we construct a matching sparsifier of bounded degree

for a graphG as follows: In the first round we construct our (1+ ϵ)-

matching sparsifier G∆ with arboricity at most 2∆ = O (
β
ϵ log

1

ϵ),
and in the second round we construct the (1+ϵ)-matching sparsifier

of [81] on top of ours. The resulting sparsifier, denoted by G̃∆,

achieves approximation factor at most (1 + ϵ) (1 + ϵ) ≤ (1 + 3ϵ)

(assuming ϵ < 1) and a maximum degree ofO (2∆/ϵ) = O (
β
ϵ 2 log

1

ϵ),
and as before we can reduce the approximation factor to 1 + ϵ by a

scaling argument.

Equipped with the bounded degree matching-sparsifier G̃∆ for

the original (of possibly huge degree) graph G, we can apply a dis-

tributed algorithm that runs efficiently for bounded degree graphs.

Specifically, Even et al. [34] presented a distributed algorithm for

computing a (1 + ϵ)-approximate MCM in ∆O (1/ϵ) +O (1

ϵ2) · log
∗ n

rounds, for graphs of maximum degree ∆. Running the algorithm of

Even et al. on top of the sparsifier G̃∆ yields a (1+O (ϵ))-approximate

MCM in

(
β
ϵ

)O (1/ϵ)
+O

(
1

ϵ 2
)
· log∗ n communication rounds; yet

again, the approximation factor can be reduced to 1 + ϵ by scaling.

Summarizing, we have proved the following theorem.

Theorem 3.2. There is a randomized distributed algorithm for

computing a (1 + ϵ)-approximate matching in
(
β
ϵ

)O (1/ϵ)
+O

(
1

ϵ 2
)
·

log
∗ n rounds, for any 0 < ϵ < 1 and β = O

(
ϵn
logn

)
, where the bound

on the approximation factor holds with high probability.

Remark. When β and ϵ are constants, Theorem 3.2 gives rise

to O (log∗ n) communication rounds, which provides an improve-

ment over the (deterministic) algorithm of Barenboim and Oren

[16, 17] that requires the same number of rounds but achieves a

(2 + ϵ)-approximation. (Barenboim and Oren do not analyze the

performance of their algorithm [16, 17] for super-constant β and

ϵ .)

3.2.1 Sublinear Communication. The round complexity and the

message complexity are perhaps the two most basic quality mea-

sures of distributed algorithms, where the former is a measure

of “runtime” and the latter can be viewed as a measure of “total

work”. The message complexity is almost always assumed to be

at least linear in the graph size (i.e., Ω(m), wherem is the number

of edges in the graph), since for almost any nontrivial distributed

graph problem, every processor needs to send and receive at least

one message along each of its incident edges. If all messages are

transmitted in a broadcast manner, then a sublinear message com-

plexity cannot be achieved unless sufficiently many processors do

not participate in the distributed algorithm (but that rules out es-

sentially any nontrivial distributed problem). We shall therefore

restrict our attention to unicast communication systems; in such

systems there is hope to design algorithms with a sublinear message

complexity, yet very few examples of such algorithms are known

(see [9, 40, 60, 63, 68, 69, 74], and the references therein).

Our work adds a new example to this very small pool, showing

that one can solve the problem of distributed (1 + ϵ)-approximate

MCM using a sublinear (depending, of course, on the neighborhood

independence number β) message complexity. As mentioned al-

ready, constructing the random matching sparsifier G∆ in unicast

communication systems can be done in a single round, where each

processor locally marks randomly ∆ of its neighboring edges, and

then sends a 1-bit message only along its marked edges. Clearly,

the total number of messages sent is at most twice the size of the

resulting sparsifierG∆, namely,O (n ·
β
ϵ log

1

ϵ). We can then run any

approximate MCM algorithm as a black-box on top of our sparsifier

to achieve a low (depending on β) message complexity. Specifically,

if the round complexity of the black-box matching algorithm is

T (n), then running it on top of our sparsifier will give rise to an

algorithmwhose message complexity is at mostT (n) ·O (n ·
β
ϵ log

1

ϵ).
Summarizing, we have proved the following result.

Theorem 3.3. Suppose there is a distributed algorithm for comput-
ing a γ -approximate MCM inT (n) rounds in general n-vertex graphs,
for any parameter γ ≥ 1 and “runtime function” T . Then there is
also a distributed algorithm for computing a (1 + ϵ)γ -approximate
MCM in T (n) + 1 rounds and using T (n) ·O (n ·

β
ϵ log

1

ϵ) messages,

for any 0 < ϵ < 1 and β = O
(
ϵn
logn

)
, provided that the distributed

system supports unicast or multicast transmissions. The bound on the
approximation factor holds with high probability.

Applying Theorem 3.3 in conjunction with Theorem 3.2 yields a

distributed algorithm for computing a (1 + ϵ)-approximate MCM

in

(
β
ϵ

)O (1/ϵ)
+O

(
1

ϵ 2
)
· log∗ n rounds and using

n · *
,

(
β

ϵ

)O (1/ϵ)
+O

(
β

ϵ3
log

1

ϵ

)
· log∗ n+

-
messages. When both β and ϵ are constants, the number of rounds

and messages is reduced to O (log∗ n) and O (n log∗ n), respectively.

3.3 Dynamic Graph Algorithms
In this section we show that a (1 + ϵ)-approximate MCM can be

maintained in the standard fully dynamic setting with a worst-case

update time of O
(
∆/ϵ2

)
= O (

β
ϵ 3 log

1

ϵ). As mentioned in Section

1.2, our update time bound holds deterministically and the approx-

imation factor of (1 + ϵ) holds with high probability against an

adaptive adversary. This is a rare example of a randomized algo-

rithm that does not make the oblivious adversary assumption.

If we were to make the oblivious adversary assumption, life

would be much simpler. In particular, in this case it is straightfor-

ward to maintain the sparsifier G∆ with a worst-case update time

of O (∆). Indeed, in such a case, following every edge update (u,v),

Session: Full Paper SPAA ’20, July 15–17, 2020, Virtual Event, USA

403

we can simply remove from the sparsifier the (at most) 2∆ edges

marked due to u and due to v , and then add in their place new

randomly sampled edges, where we mark ∆ random neighboring

edges due to u and then another ∆ random neighboring edges due

to v , and add the newly marked edges to G∆ in place of those that

got removed. As for the analysis, marking ∆ random neighboring

edges for a vertex can be done in time O (∆) deterministically, e.g.,

by employing the argument of Section 3.1 (for the centralized se-

quential setting), hence the worst-case update time of the algorithm

is trivially bounded byO (∆). As for the approximation factor, since

the adversary is oblivious to the random bits used by the algorithm,

the proof of Theorem 2.1 remains valid. Now that we are equipped

with the dynamic sparsifier, and recalling (from Observation 2.12)

that its arboricity is at most 2∆, we can simply run on it the dy-

namic (1 + ϵ)-approximate MCM algorithm due to [77], to get a

worst-case update time of O (∆/ϵ2), as required.
Our goal, however, is to cope with an adaptive adversary. The

suggestion above would fail in this case, since the probabilistic

argument used in the proof of Theorem 2.1 for bounding the ap-

proximation factor of G∆ makes critical use of the fact that the

random neighboring edges marked for any vertex are completely

independent of random choices made due to other vertices. To

overcome this challenge, we take a completely different approach,

which is based on a scheme for dynamic approximate matchings

due to [44].

The scheme of [44] exploits a basic stability property of match-

ings: the MCM size changes by at most 1 following each update

step. Thus if we have a γ -approximate MCM, for any parameter

γ ≥ 1, the approximation factor of the matching will remain close

to γ throughout a long update sequence. (Here we focus on the

regime of γ ≈ 1 + ϵ .)

Lemma 3.4 (Lemma 3.1 from [44]). Let ϵ, ϵ ′ ≤ 1/2. Suppose that
Mi is a (1 + ϵ)-approximate MCM for Gi . For j = i, i + 1, . . . , i +

⌊ϵ ′ · |Mi |⌋, letM
(j)
i denote the matchingMi after removing from it

all edges that got deleted during the updates i + 1, . . . , j. ThenM
(j)
i

is a (1 + 2ϵ + 2ϵ ′)-approximate MCM for the graph G j .

Next, we adapt the argument of [44] for maintaining a (1 + ϵ)-
approximate MCM to fully dynamic graphs of neighborhood in-

dependence number bounded by β . One can compute a (1 + ϵ/4)-
approximate MCMMt at a certain update step t , and then re-use the

samematchingM
(i)
t throughout all update steps i = t , t+1, . . . , t ′ =

t + ⌊ϵ/4 · |Mt |⌋ (after removing from it all edges that got deleted

from the graph between steps t and i). By Lemma 3.4, assuming

ϵ ≤ 1/2,M
(i)
t provides a (1 + ϵ)-approximate MCM for all graphs

Gi . Next compute a fresh (1 + ϵ/4)-approximate MCM Mt ′ fol-

lowing update step t ′ and re-use it throughout all update steps

t ′, t ′ + 1, . . . , t ′ + ⌊ϵ/4 · |Mt ′ |⌋, and repeat. In this way the static

time complexity of computing a (1 + ϵ)-approximate MCM M is

amortized over 1+ ⌊ϵ/4· |M |⌋ = Ω(ϵ · |M |) update steps. By Theorem
3.1, the static computation time of a (1 + ϵ)-approximate MCM is

O (|M | ·
β
ϵ 2 · log

1

ϵ), hence the amortized update time isO (
β
ϵ 3 · log

1

ϵ).

AWorst-Case Update time. To achieve a low worst-case up-

date time, a standard tweak (used in [44]) is to simulate the static

approximate matching computation within a “time window” of

1 + ⌊ϵ/4 · |M |⌋ consecutive update steps, so that following each

update step the algorithm simulates only

O

(
|M | ·

β

ϵ2
· log

1

ϵ

)
/(1 + ⌊ϵ/4 · |M |⌋) = O

(
β

ϵ3
· log

1

ϵ

)
steps of the static computation. During this timewindow the gradually-

computed matching, denoted byM ′, is useless, so the previously-
computed matching M is re-used as the output matching. This

means that each matching is re-used throughout a time window

of twice as many update steps, hence the approximation factor

increases from 1 + ϵ to 1 + 2ϵ , but we can reduce it back to 1 + ϵ by

a scaling argument. (Note that the gradually-computed matching

does not include edges that got deleted from the graph during the

time window.)

While the bound on the update time is deterministic, the bound

1+ϵ on the approximation factor of the maintained matching is not;

indeed, it is determined by that of the static approximate matching

algorithm (provided by Theorem 3.1), which, in turn, is determined

by that of the randommatching sparsifierG∆ (provided by Theorem

2.1), which holds with high probability. Note, however, that the sta-

bility property, which implies that the same approximation factor

(up to an additive error ofO (ϵ)) provided by the static computation

will continue to hold until the next static computation, is determin-

istic. As a direct consequence, the guarantee on the approximation

factor holds with high probability against an adaptive adversary.
To summarize, we have proved the following statement.

Theorem 3.5. A (1 + ϵ)-approximate matching can be main-
tained in fully dynamic graphs of neighborhood independence number
bounded by β with a worst-case update time of O (

β
ϵ 3 log

1

ϵ), for any

0 < ϵ < 1 and β = O
(
ϵn
logn

)
. The bound on the update time holds

deterministically while the bound on the approximation factor holds
with high probability against an adaptive adversary.

Remark. The previous (deterministic) algorithm by Barenboim

and Maimon [14] achieves approximation factor 2 (via a maximal

matching) with a higher update time of O (
√
βn); specifically, the

update time due to [14] is higher than ours by a factor of

√
n
β , for

constant ϵ . In particular, when β and ϵ are constants, our update
time is constant and the update time due to [14] is O (

√
n).

ACKNOWLEDGMENTS
The second-named author thanks Sepehr Assadi for fruitful discus-

sions. Research was partially supported by Israel Science Founda-

tion grant 1991/19 and by Len Blavatnik and the Blavatnik Family

foundation.

Session: Full Paper SPAA ’20, July 15–17, 2020, Virtual Event, USA

404

REFERENCES
[1] Kook Jin Ahn and Sudipto Guha. 2013. Linear programming in the semi-streaming

model with application to the maximum matching problem. Inf. Comput. 222
(2013), 59–79.

[2] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. 1974. The Design and
Analysis of Computer Algorithms. Addison-Wesley.

[3] Noga Alon, Yossi Matias, and Mario Szegedy. 1996. The Space Complexity of

Approximating the Frequency Moments. In Proc. of the 28th STOC. 20–29.
[4] Sepehr Assadi, MohammadHossein Bateni, Aaron Bernstein, Vahab S. Mirrokni,

and Cliff Stein. 2019. Coresets Meet EDCS: Algorithms for Matching and Vertex

Cover on Massive Graphs. In Proc. of the 13th SODA. 1616–1635.
[5] Sepehr Assadi, Yu Chen, and Sanjeev Khanna. 2019. Sublinear Algorithms for (∆

+ 1) Vertex Coloring. In Proc. of the 30th SODA. 767–786.
[6] Sepehr Assadi and Sanjeev Khanna. 2017. Randomized Composable Coresets for

Matching and Vertex Cover. In Proc. of the 29th SPAA. 3–12.
[7] Sepehr Assadi, Krzysztof Onak, Baruch Schieber, and Shay Solomon. 2018. Fully

dynamic maximal independent set with sublinear update time. In Proceedings of
the 50th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018,
Los Angeles, CA, USA, June 25-29, 2018. 815–826.

[8] Sepehr Assadi and Shay Solomon. 2019. When Algorithms for Maximal Inde-

pendent Set and Maximal Matching Run in Sublinear Time. In Proc. of the 46th
ICALP. 17:1–17:17.

[9] John Augustine, Anisur RahamanMolla, and Gopal Pandurangan. 2018. Sublinear

Message Bounds for Randomized Agreement. In Proc. of PODC, Calvin Newport

and Idit Keidar (Eds.). 315–324.

[10] Leonid Barenboim and Michael Elkin. 2011. Distributed deterministic edge

coloring using bounded neighborhood independence. In Proc. of the 30th PODC.
129–138.

[11] Leonid Barenboim, Michael Elkin, and Tzalik Maimon. 2017. Deterministic

Distributed (Delta + o(Delta))-Edge-Coloring, and Vertex-Coloring of Graphs

with Bounded Diversity. In Proc. of PODC. 175–184.
[12] Leonid Barenboim, Michael Elkin, Seth Pettie, and Johannes Schneider. 2012. The

Locality of Distributed Symmetry Breaking. In Proc. of the 53rd FOCS. 321–330.
[13] Leonid Barenboim and Tzalik Maimon. 2018. Distributed Symmetry Breaking in

Graphs with Bounded Diversity. In Proc. of IPDPS. 723–732.
[14] Leonid Barenboim and Tzalik Maimon. 2019. Fully Dynamic Graph Algorithms

Inspired by Distributed Computing: Deterministic Maximal Matching and Edge

Coloring in Sublinear Update-Time. ACM Journal of Experimental Algorithmics
24, 1 (2019), 1.14:1–1.14:24.

[15] Leonid Barenboim and Tzalik Maimon. 2020. Simple Distributed Spanners in

Dense Congest Networks. In Proc. of SOFSEM. 260–272.

[16] Leonid Barenboim and Gal Oren. 2020. Distributed Backup Placement in One

Round and its Applications to Maximum Matching Approximation and Self-

Stabilization. In Proc. of the 3rd SOSA@SODA. 99–105.
[17] Leonid Barenboim and Gal Oren. 2020. Fast Distributed Backup Placement in

Sparse and Dense Networks. In Proc. of the 1st APOCS@SODA. 90–104.
[18] Surender Baswana, Manoj Gupta, and Sandeep Sen. 2011. Fully DynamicMaximal

Matching in O (log n) Update Time. In Proc. of the 52nd FOCS. 383–392.
[19] Aaron Bernstein, JacobHolm, and Eva Rotenberg. 2018. Online BipartiteMatching

with Amortized Replacements. In Proc. of the 29th SODA. 947–959.
[20] Aaron Bernstein and Cliff Stein. 2016. Faster Fully Dynamic Matchings with

Small Approximation Ratios. In Proc. of the 27th SODA. 692–711.
[21] Sayan Bhattacharya, Deeparnab Chakrabarty, and Monika Henzinger. 2017. De-

terministic Fully Dynamic Approximate Vertex Cover and Fractional Matching

in O(1) Amortized Update Time. In Proc. of the 19th IPCO. 86–98.
[22] Sayan Bhattacharya, Monika Henzinger, and Giuseppe F. Italiano. 2018. Deter-

ministic Fully Dynamic Data Structures for Vertex Cover and Matching. SIAM J.
Comput. 47, 3 (2018), 859–887.

[23] Sayan Bhattacharya, Monika Henzinger, and Danupon Nanongkai. 2016. New

deterministic approximation algorithms for fully dynamic matching. In Proc. of
the 48th STOC. 398–411.

[24] Sayan Bhattacharya, Monika Henzinger, and Danupon Nanongkai. 2016. New

deterministic approximation algorithms for fully dynamic matching. In Proc. of
the 48th STOC. 398–411.

[25] Sayan Bhattacharya and Janardhan Kulkarni. 2019 (to appear). Deterministically

Maintaining a (2+ϵ)-Approximate MinimumVertex Cover in O(1/ϵ2) Amortized

Update Time. In Proc. of the 30th SODA. Also posted on CoRR, abs/1805.03498,

2018.

[26] Bartlomiej Bosek, Dariusz Leniowski, Piotr Sankowski, and Anna Zych. 2014.

Online Bipartite Matching in Offline Time. In Proc. of the 55th FOCS. 384–393.
[27] Keren Censor-Hillel, Elad Haramaty, and Zohar S. Karnin. 2016. Optimal Dynamic

Distributed MIS. In Proc. of the PODC. 217–226.
[28] Moses Charikar and Shay Solomon. 2018. Fully Dynamic Almost-Maximal Match-

ing: Breaking the Polynomial Worst-Case Time Barrier. In Proc. of the 45th ICALP.
33:1–33:14.

[29] Nicos Christofides. 1976. Worst-case analysis of a new heuristic for the travel-
ling salesman problem. Technical Report. Carnegie-Mellon Univ Pittsburgh Pa

Management Sciences Research Group.

[30] Maria Chudnovsky and Paul D. Seymour. 2005. The structure of claw-free graphs.

In Surveys in Combinatorics, 2005 [invited lectures from the Twentieth British
Combinatorial Conference, Durham, UK, July 2005]. Cambridge University Press,

153–171.

[31] Artur Czumaj, Jakub Lacki, Aleksander Madry, Slobodan Mitrovic, Krzysztof

Onak, and Piotr Sankowski. 2018. Round compression for parallel matching

algorithms. In Proc. of the 50th STOC.
[32] Thomas E Easterfield. 1946. A combinatorial algorithm. Journal of the London

Mathematical Society 1, 3 (1946), 219–226.

[33] Jack Edmonds. 1965. Paths, trees, and flowers. Canadian Journal of Mathematics
17 (1965), 449–467.

[34] Guy Even, Moti Medina, and Dana Ron. 2014. Distributed Maximum Matching

in Bounded Degree Graphs. CoRR abs/1407.7882 (2014).

[35] Ralph J. Faudree, Evelyne Flandrin, and Zdenek Ryjácek. 1997. Claw-free graphs

- A survey. Discrete Mathematics 164, 1-3 (1997), 87–147.
[36] Zvi Galil and Victor Y. Pan. 1985. Improved Processor Bounds for Algebraic and

Combinatorial Problems in RNC. In Proc. of the 26th FOCS. 490–495.
[37] Buddhima Gamlath, Michael Kapralov, Andreas Maggiori, Ola Svensson, and

David Wajc. 2019. Online Matching with General Arrivals. In Proc. of the 60th
FOCS. 26–37.

[38] Beat Gfeller and Elias Vicari. 2007. A randomized distributed algorithm for the

maximal independent set problem in growth-bounded graphs. In Proc. of the 26th
PODC. 53–60.

[39] Mohsen Ghaffari, Themis Gouleakis, Christian Konrad, Slobodan Mitrovic, and

Ronitt Rubinfeld. 2018. Improved Massively Parallel Computation Algorithms

for MIS, Matching, and Vertex Cover. In Proc. of PODC. 129–138.
[40] Mohsen Ghaffari and Fabian Kuhn. 2018. Distributed MST and Broadcast with

Fewer Messages, and Faster Gossiping. In Proc. of the 32nd DISC. 30:1–30:12.
[41] Ashish Goel, Michael Kapralov, and Sanjeev Khanna. 2009. Perfect matchings via

uniform sampling in regular bipartite graphs. In Proc. of the 20th SODA. 11–17.
[42] Ashish Goel, Michael Kapralov, and Sanjeev Khanna. 2010. Perfect matchings in

o(n log n) time in regular bipartite graphs. In Proc. of the 42nd STOC. 39–46.
[43] Ashish Goel, Michael Kapralov, and Sanjeev Khanna. 2012. On the communication

and streaming complexity of maximum bipartite matching. In Proc. of the 23rd
SODA. 468–485.

[44] Manoj Gupta and Richard Peng. 2013. Fully Dynamic (1+ e)-Approximate Match-

ings. In Proc. of the 54th FOCS. 548–557.
[45] Frank Hadlock. 1975. Finding a maximum cut of a planar graph in polynomial

time. SIAM J. Comput. 4, 3 (1975), 221–225.
[46] Magnús M. Halldórsson. 2009. Wireless Scheduling with Power Control. In Proc.

of 17th ESA, Amos Fiat and Peter Sanders (Eds.). 361–372.

[47] Magnús M. Halldórsson and Christian Konrad. 2015. Distributed Large Inde-

pendent Sets in One Round on Bounded-Independence Graphs. In Proc. of DISC.
559–572.

[48] Magnús M. Halldórsson, Guy Kortsarz, and Hadas Shachnai. 2003. Sum Coloring

Interval and k-Claw Free Graphs with Application to Scheduling Dependent Jobs.

Algorithmica 37, 3 (2003), 187–209.
[49] Michal Hanckowiak, Michal Karonski, and Alessandro Panconesi. 1998. On the

Distributed Complexity of Computing Maximal Matchings. In Proc. of the 9th
SODA. 219–225.

[50] Frank L Hitchcock. 1941. The distribution of a product from several sources to

numerous localities. Journal of mathematics and physics 20, 1-4 (1941), 224–230.
[51] John E. Hopcroft and Richard M. Karp. 1973. An n

5/2
Algorithm for Maximum

Matchings in Bipartite Graphs. SIAM J. Comput. 2, 4 (1973), 225–231.
[52] John E. Hopcroft and Richard M. Karp. 1973. An n

5/2
Algorithm for Maximum

Matchings in Bipartite Graphs. SIAM J. Comput. 2, 4 (1973), 225–231.
[53] Amos Israeli and Alon Itai. 1986. A Fast and Simple Randomized Parallel Algo-

rithm for Maximal Matching. Inf. Process. Lett. 22, 2 (1986), 77–80.
[54] Lester Randolph Ford Jr. and Delbert Ray Fulkerson. 1965. Flows in Networks.

Princeton University Press, Princeton, New Jersey.

[55] Leonid V Kantorovich. 1942. On the translocation of masses. In Dokl. Akad. Nauk.
USSR (NS), Vol. 37. 199–201.

[56] Haim Kaplan and Shay Solomon. 2018. Dynamic Representations of Sparse

Distributed Networks: A Locality-Sensitive Approach. In Proc. of the 30th SPAA.
33–42.

[57] Michael Kapralov. 2013. Better bounds for matchings in the streaming model. In

Proc. of the 24th SODA. 1679–1697.
[58] Richard M. Karp, Eli Upfal, and Avi Wigderson. 1985. Constructing a Perfect

Matching is in Random NC. In Proc. of the 17th STOC. 22–32.
[59] Richard M. Karp, Umesh V. Vazirani, and Vijay V. Vazirani. 1990. An Optimal

Algorithm for On-line Bipartite Matching. In Proc. of the 22nd STOC. 352–358.
[60] Valerie King, Shay Kutten, and Mikkel Thorup. 2015. Construction and Im-

promptu Repair of an MST in a Distributed Network with o(m) Communication.

In Proc. of PODC. 71–80.
[61] Fabian Kuhn, Thomas Moscibroda, and Roger Wattenhofer. 2004. What cannot

be computed locally!. In Proc. of the 23rd PODC. 300–309.

Session: Full Paper SPAA ’20, July 15–17, 2020, Virtual Event, USA

405

[62] Fabian Kuhn, Roger Wattenhofer, and Aaron Zollinger. 2008. Ad hoc networks

beyond unit disk graphs. Wireless Networks 14, 5 (2008), 715–729.
[63] Shay Kutten, Gopal Pandurangan, David Peleg, Peter Robinson, and Amitabh

Trehan. 2013. Sublinear Bounds for Randomized Leader Election. In Proc. of the
14th ICDCN (Lecture Notes in Computer Science). 348–362.

[64] Eugene L Lawler. 1976. Combinatorial Optimization: Networks and Matroids,

Holt, Rinehart and Winston. New York (1976).

[65] Christoph Lenzen and Roger Wattenhofer. 2010. Minimum Dominating Set

Approximation in Graphs of Bounded Arboricity. In Proc. of DISC. 510–524.
[66] G. Lev. 1980. Size bounds and parallel algorithms for networks. Technical Report

CST-8-80. Dept. of Computer Science, Univ. of Edinburgh.

[67] Zvi Lotker, Boaz Patt-Shamir, and Seth Pettie. 2015. Improved Distributed Ap-

proximate Matching. J. ACM 62, 5 (2015), 38:1–38:17.

[68] Ali Mashreghi and Valerie King. 2018. Broadcast and Minimum Spanning Tree

with o(m) Messages in the Asynchronous CONGEST Model. In Proc. of the 32nd
DISC. 37:1–37:17.

[69] Ali Mashreghi and Valerie King. 2019. Brief Announcement: Faster Asynchronous

MST and Low Diameter Tree Construction with Sublinear Communication. In

Proc. of the 33rd DISC. 49:1–49:3.
[70] Silvio Micali and Vijay V. Vazirani. 1980. An O(sqrt(|v |) |E |) Algorithm for

Finding Maximum Matching in General Graphs. In Proc. of the 21st FOCS. IEEE
Computer Society, 17–27.

[71] Ofer Neiman and Shay Solomon. 2013. Simple deterministic algorithms for fully

dynamic maximal matching. In Proc. of the 45th STOC. 745–754.
[72] Krzysztof Onak, Dana Ron, Michal Rosen, and Ronitt Rubinfeld. 2012. A near-

optimal sublinear-time algorithm for approximating the minimum vertex cover

size. In Proc. of the 23rd SODA. 1123–1131.

[73] GI Orlova. 1972. Finding the maximum cut in a graph. Engineering Cybernetics
10 (1972), 502–506.

[74] Gopal Pandurangan, Peter Robinson, and Michele Scquizzato. 2017. A time- and

message-optimal distributed algorithm for minimum spanning trees. In Proc. of
the 49th STOC. 743–756.

[75] Merav Parter, David Peleg, and Shay Solomon. 2016. Local-on-Average Dis-

tributed Tasks. In Proc. of the 27th SODA. 220–239.
[76] D. Peleg. 2000. Distributed Computing: A Locality-Sensitive Approach. SIAM.

[77] David Peleg and Shay Solomon. 2016. Dynamic (1 + ϵ)-Approximate Matchings:

A Density-Sensitive Approach. In Proc. of the 27th SODA. 712–729.
[78] Johannes Schneider and Roger Wattenhofer. 2008. A log-star distributed maximal

independent set algorithm for growth-bounded graphs. In Proc. of the 27th PODC.
35–44.

[79] Johannes Schneider and Roger Wattenhofer. 2010. An optimal maximal indepen-

dent set algorithm for bounded-independence graphs. Distributed Computing 22,

5-6 (2010), 349–361.

[80] Shay Solomon. 2016. Fully Dynamic Maximal Matching in Constant Update

Time. In Proc. of the 57th FOCS. 325–334.
[81] Shay Solomon. 2018. Local Algorithms for Bounded Degree Sparsifiers in Sparse

Graphs. In Proc. of the 9th ITCS. 52:1–52:19.
[82] Robert L Thorndike. 1950. The problem of classification of personnel. Psychome-

trika 15, 3 (1950), 215–235.
[83] Vijay V. Vazirani. 2012. An Improved Definition of Blossoms and a Simpler Proof

of the MV Matching Algorithm. CoRR abs/1210.4594 (2012).

[84] David Wajc. 2020. Rounding Dynamic Matchings Against an Adaptive Adversary.

In STOC. To appear. Also in CoRR, abs/1911.05545.

Session: Full Paper SPAA ’20, July 15–17, 2020, Virtual Event, USA

406

	Abstract
	1 Introduction
	1.1 Our Contribution
	1.2 Applications of Our Meta-Theorem
	1.3 Preliminaries

	2 The Sparsifier
	2.1 G is a (1+)-sparsifier
	2.2 Additional properties of G.

	3 Applications
	3.1 Centralized Sequential Algorithms
	3.2 Distributed Algorithms
	3.3 Dynamic Graph Algorithms

	Acknowledgments
	References

